Whole Slide Multiple Instance Learning for Predicting Axillary Lymph Node Metastasis

Glejdis Shkëmbi, Johanna P. Müller, Zhe Li, Katharina Breininger, Peter Schüffler, Bernhard Kainz

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Breast cancer is a major concern for women’s health globally, with axillary lymph node (ALN) metastasis identification being critical for prognosis evaluation and treatment guidance. This paper presents a deep learning (DL) classification pipeline for quantifying clinical information from digital core-needle biopsy (CNB) images, with one step less than existing methods. A publicly available dataset of 1058 patients was used to evaluate the performance of different baseline state-of-the-art (SOTA) DL models in classifying ALN metastatic status based on CNB images. An extensive ablation study of various data augmentation techniques was also conducted. Finally, the manual tumor segmentation and annotation step performed by the pathologists was assessed. Our proposed training scheme outperformed SOTA by 3.73%. Source code is available here.

OriginalspracheEnglisch
TitelData Engineering in Medical Imaging - 1st MICCAI Workshop, DEMI 2023, Held in Conjunction with MICCAI 2023, Proceedings
Redakteure/-innenBinod Bhattarai, Sharib Ali, Anita Rau, Anh Nguyen, Ana Namburete, Razvan Caramalau, Danail Stoyanov
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten11-20
Seitenumfang10
ISBN (Print)9783031449918
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung1st MICCAI Workshop on Data Engineering in Medical Imaging, DEMI 2023 - Vancouver, Kanada
Dauer: 8 Okt. 20238 Okt. 2023

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band14314 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz1st MICCAI Workshop on Data Engineering in Medical Imaging, DEMI 2023
Land/GebietKanada
OrtVancouver
Zeitraum8/10/238/10/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Whole Slide Multiple Instance Learning for Predicting Axillary Lymph Node Metastasis“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren