Whole body motion primitive segmentation from monocular video

Dana Kulić, Dongheui Lee, Yoshihiko Nakamura

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

11 Zitate (Scopus)

Abstract

This paper proposes a novel approach for motion primitive segmentation from continuous full body human motion captured on monocular video. The proposed approach does not require a kinematic model of the person, nor any markers on the body. Instead, optical flow computed directly in the image plane is used to estimate the location of segment points. The approach is based on detecting tracking features in the image based on the Shi and Thomasi algorithm [1]. The optical flow at each feature point is then estimated using the Lucas Kanade Pyramidal Optical Flow estimation algorithm [2]. The feature points are clustered and tracked on-line to find regions of the image with coherent movement. The appearance and disappearance of these coherent clusters indicates the start and end points of motion primitive segments. The algorithm performance is validated on full body motion video sequences, and compared to a joint-angle, motion capture based approach. The results show that the segmentation performance is comparable to the motion capture based approach, while using much simpler hardware and at a lower computational effort.

OriginalspracheEnglisch
Titel2009 IEEE International Conference on Robotics and Automation, ICRA '09
Seiten3166-3172
Seitenumfang7
DOIs
PublikationsstatusVeröffentlicht - 2009
Extern publiziertJa
Veranstaltung2009 IEEE International Conference on Robotics and Automation, ICRA '09 - Kobe, Japan
Dauer: 12 Mai 200917 Mai 2009

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Konferenz

Konferenz2009 IEEE International Conference on Robotics and Automation, ICRA '09
Land/GebietJapan
OrtKobe
Zeitraum12/05/0917/05/09

Fingerprint

Untersuchen Sie die Forschungsthemen von „Whole body motion primitive segmentation from monocular video“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren