What Does DALL-E 2 Know About Radiology?

Lisa C. Adams, Felix Busch, Daniel Truhn, Marcus R. Makowski, Hugo J.W.L. Aerts, Keno K. Bressem

Publikation: Beitrag in FachzeitschriftÜbersichtsartikelBegutachtung

27 Zitate (Scopus)

Abstract

Generative models, such as DALL-E 2 (OpenAI), could represent promising future tools for image generation, augmentation, and manipulation for artificial intelligence research in radiology, provided that these models have sufficient medical domain knowledge. Herein, we show that DALL-E 2 has learned relevant representations of x-ray images, with promising capabilities in terms of zero-shot text-to-image generation of new images, the continuation of an image beyond its original boundaries, and the removal of elements; however, its capabilities for the generation of images with pathological abnormalities (eg, tumors, fractures, and inflammation) or computed tomography, magnetic resonance imaging, or ultrasound images are still limited. The use of generative models for augmenting and generating radiological data thus seems feasible, even if the further fine-tuning and adaptation of these models to their respective domains are required first.

OriginalspracheEnglisch
Aufsatznummere43110
FachzeitschriftJournal of Medical Internet Research
Jahrgang25
DOIs
PublikationsstatusVeröffentlicht - 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „What Does DALL-E 2 Know About Radiology?“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren