Weld Seam Trajectory Planning Using Generative Adversarial Networks

Michael K. Kick, Alexander Kuermeier, Christian Stadter, Michael F. Zaeh

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Reliable electricity transmission in battery cells and modules is indispensable for energy storages. However, common joining technologies for such devices such as bolting or soldering suffer from several drawbacks, including force-dependent resistance or low dynamic strength. Laser beam welding shows potential to overcome these disadvantages. Besides excellent joint properties, it is applicable to small assembly spaces and has potential for the implementation of lightweight construction. In addition, laser beam welding allows users to precisely adjust the weld seam’s electrical conductivity and mechanical strength by an adaption of the weld seam trajectory. For industrial purposes, low costs and short development cycles are crucial. These short development cycles require a fast and easy design-to-production process. Therefore, an adapted Machine Learning method (Generative Adversarial Networks) is presented to simplify and accelerate the weld seam trajectory planning for laser beam welding. The algorithm predicts a suitable weld seam trajectory to achieve the desired electrical conductivity and tensilestrength. For the algorithm used, feasibility was demonstrated using a dataset of the Modified National Institute of Standards and Technology (MNIST) database.

OriginalspracheEnglisch
TitelTowards Sustainable Customization
UntertitelBridging Smart Products and Manufacturing Systems - Proceedings of the 8th Changeable, Agile, Reconfigurable and Virtual Production Conference CARV 2021 and 10th World Mass Customization and Personalization Conference MCPC 2021
Redakteure/-innenAnn-Louise Andersen, Rasmus Andersen, Thomas Ditlev Brunoe, Maria Stoettrup Schioenning Larsen, Kjeld Nielsen, Alessia Napoleone, Stefan Kjeldgaard
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten407-414
Seitenumfang8
ISBN (Print)9783030906993
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung8th Changeable, Agile, Reconfigurable and Virtual Production Conference, CARV 2021 and 10th World Mass Customization and Personalization Conference, MCPC 2021 - Aalborg, Dänemark
Dauer: 1 Nov. 20212 Nov. 2021

Publikationsreihe

NameLecture Notes in Mechanical Engineering
ISSN (Print)2195-4356
ISSN (elektronisch)2195-4364

Konferenz

Konferenz8th Changeable, Agile, Reconfigurable and Virtual Production Conference, CARV 2021 and 10th World Mass Customization and Personalization Conference, MCPC 2021
Land/GebietDänemark
OrtAalborg
Zeitraum1/11/212/11/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Weld Seam Trajectory Planning Using Generative Adversarial Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren