Weakly supervised semantic segmentation of Crohn's disease tissues from abdominal MRI

Dwarikanath Mahapatra, Alexander Vezhnevets, Peter J. Schuffler, Jeroen A.W. Tielbeek, Franciscus M. Vos, Joachim M. Buhmann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

We address the problem of weakly supervised segmentation (WSS) of medical images which is more challenging and has potentially greater applications in the medical imaging community. Training images are labeled only by the classes they contain, and not by the pixel labels. We make use of the Multi Image Model (MIM) for weakly supervised segmentation which exploits superpixel features and assigns labels to every pixel. MIM connects superpixels from all training images in a data driven fashion. Test images are integrated into the MIM for predicting their labels, thus making full use of the training samples. Experimental results on abdominal magnetic resonance (MR) images of patients with Crohn's disease show that WSS performs close to fully supervised methods and given sufficient samples can perform on par with fully supervised methods.

OriginalspracheEnglisch
TitelISBI 2013 - 2013 IEEE 10th International Symposium on Biomedical Imaging
UntertitelFrom Nano to Macro
Seiten844-847
Seitenumfang4
DOIs
PublikationsstatusVeröffentlicht - 2013
Extern publiziertJa
Veranstaltung2013 IEEE 10th International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2013 - San Francisco, CA, USA/Vereinigte Staaten
Dauer: 7 Apr. 201311 Apr. 2013

Publikationsreihe

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (elektronisch)1945-8452

Konferenz

Konferenz2013 IEEE 10th International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2013
Land/GebietUSA/Vereinigte Staaten
OrtSan Francisco, CA
Zeitraum7/04/1311/04/13

Fingerprint

Untersuchen Sie die Forschungsthemen von „Weakly supervised semantic segmentation of Crohn's disease tissues from abdominal MRI“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren