Weakly-supervised discovery of visual pattern configurations

Hyun Oh Song, Yong Jae Lee, Stefanie Jegelka, Trevor Darrell

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

121 Zitate (Scopus)

Abstract

The prominence of weakly labeled data gives rise to a growing demand for object detection methods that can cope with minimal supervision. We propose an approach that automatically identifies discriminative configurations of visual patterns that are characteristic of a given object class. We formulate the problem as a constrained submodular optimization problem and demonstrate the benefits of the discovered configurations in remedying mislocalizations and finding informative positive and negative training examples. Together, these lead to state-of-the-art weakly-supervised detection results on the challenging PASCAL VOC dataset.

OriginalspracheEnglisch
Seiten (von - bis)1637-1645
Seitenumfang9
FachzeitschriftAdvances in Neural Information Processing Systems
Jahrgang2
AusgabenummerJanuary
PublikationsstatusVeröffentlicht - 2014
Extern publiziertJa
Veranstaltung28th Annual Conference on Neural Information Processing Systems 2014, NIPS 2014 - Montreal, Kanada
Dauer: 8 Dez. 201413 Dez. 2014

Fingerprint

Untersuchen Sie die Forschungsthemen von „Weakly-supervised discovery of visual pattern configurations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren