Abstract
The prominence of weakly labeled data gives rise to a growing demand for object detection methods that can cope with minimal supervision. We propose an approach that automatically identifies discriminative configurations of visual patterns that are characteristic of a given object class. We formulate the problem as a constrained submodular optimization problem and demonstrate the benefits of the discovered configurations in remedying mislocalizations and finding informative positive and negative training examples. Together, these lead to state-of-the-art weakly-supervised detection results on the challenging PASCAL VOC dataset.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1637-1645 |
Seitenumfang | 9 |
Fachzeitschrift | Advances in Neural Information Processing Systems |
Jahrgang | 2 |
Ausgabenummer | January |
Publikationsstatus | Veröffentlicht - 2014 |
Extern publiziert | Ja |
Veranstaltung | 28th Annual Conference on Neural Information Processing Systems 2014, NIPS 2014 - Montreal, Kanada Dauer: 8 Dez. 2014 → 13 Dez. 2014 |