Weak differentiability of the control-to-state mapping in a parabolic equation with hysteresis

Martin Brokate, Klemens Fellner, Matthias Lang-Batsching

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

2 Zitate (Scopus)

Abstract

We consider the heat equation on a bounded domain subject to an inhomogeneous forcing in terms of a rate-independent (hysteresis) operator and a control variable. The aim of the paper is to establish a functional analytical setting which allows to prove weak differentiability properties of the control-to-state mapping. Using results of Brokate and Krejčí (DCDS 35(6):2405–2421, 2015) and Brokate (Newton and Bouligand derivatives of the scalar play and stop operator, arXiv:1607.07344, version 2, 2019) on the weak differentiability of scalar rate-independent operators, we prove Bouligand and Newton differentiability in suitable Bochner spaces of the control-to-state mapping in a parabolic problem.

OriginalspracheEnglisch
Aufsatznummer46
FachzeitschriftNonlinear Differential Equations and Applications
Jahrgang26
Ausgabenummer6
DOIs
PublikationsstatusVeröffentlicht - 1 Dez. 2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „Weak differentiability of the control-to-state mapping in a parabolic equation with hysteresis“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren