Wavelet features for classification of vote snore sounds

Kun Qian, Christoph Janott, Zixing Zhang, Clemens Heiser, Björn Schuller

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

31 Zitate (Scopus)

Abstract

Location and form of the upper airway obstruction is essential for a targeted therapy of obstructive sleep apnea (OSA). Utilizing snore sounds (SnS) to reveal the pathological characters of OSA patients has been the subject of scientific research for several decades. Fewer studies exist on the evaluation of SnS to identify the corresponding obstruction types in the upper airway. In this study, we propose a novel feature set based on wavelet transform with a support vector machine classifier to discriminate VOTE (velum, oropharyngeal lateral walls, tongue base and epiglottis) snore sounds labelled during drug-induced sleep endoscopy (DISE). Based on snore sound data collected from 24 snoring subjects, processed by a subject-independent 2-fold cross validation experiment, we can show that our wavelet features outperform the frequently-used acoustic features (formants, MFCC, power ratio, crest factor, fundamental frequency) at an WAR (weighted average recall) of 78.2 % and an UAR (unweighted average recall) of 71.2%, with an enhancement ranging from 5.1 % to 24.4% and 12.2% to 46.4% in WAR and UAR, respectively.

OriginalspracheEnglisch
Titel2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten221-225
Seitenumfang5
ISBN (elektronisch)9781479999880
DOIs
PublikationsstatusVeröffentlicht - 18 Mai 2016
Veranstaltung41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Shanghai, China
Dauer: 20 März 201625 März 2016

Publikationsreihe

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Band2016-May
ISSN (Print)1520-6149

Konferenz

Konferenz41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016
Land/GebietChina
OrtShanghai
Zeitraum20/03/1625/03/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „Wavelet features for classification of vote snore sounds“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren