Wavelet contrast-based image inpainting with sparsity-driven initialization

Philipp Tiefenbacher, Michael Sirch, Mohammadreza Babaee, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Image inpainting is the task of removing undesired objects or flaws in images. This work advances an exemplar-based global optimization image inpainting algorithm. For that purpose, the inpainting area is iteratively refined through the minimization of a cost function. The minimization outcome depends on the initial values of the inpainting area. We compare three initialization methods with a new sparsity-driven approach. Lastly, we propose the new wavelet contrast costs which increase the inpainting quality. Wavelet contrasts reduce computational complexity in comparison to wavelet histograms while preserving their ability of measuring the density of image texture.

OriginalspracheEnglisch
Titel2016 IEEE International Conference on Image Processing, ICIP 2016 - Proceedings
Herausgeber (Verlag)IEEE Computer Society
Seiten3528-3532
Seitenumfang5
ISBN (elektronisch)9781467399616
DOIs
PublikationsstatusVeröffentlicht - 3 Aug. 2016
Veranstaltung23rd IEEE International Conference on Image Processing, ICIP 2016 - Phoenix, USA/Vereinigte Staaten
Dauer: 25 Sept. 201628 Sept. 2016

Publikationsreihe

NameProceedings - International Conference on Image Processing, ICIP
Band2016-August
ISSN (Print)1522-4880

Konferenz

Konferenz23rd IEEE International Conference on Image Processing, ICIP 2016
Land/GebietUSA/Vereinigte Staaten
OrtPhoenix
Zeitraum25/09/1628/09/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „Wavelet contrast-based image inpainting with sparsity-driven initialization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren