TY - GEN
T1 - Wall-modeled large-eddy simulation of the VFE-2 delta wing
AU - Zwerger, Christian
AU - Hickel, Stefan
AU - Breitsamter, Christian
AU - Adams, Nikolaus
N1 - Publisher Copyright:
© 2016, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2015
Y1 - 2015
N2 - We performed wall-modeled large-eddy simulation of the flow field around the VFE-2 delta wing, focusing on two aspects: (1) leading-edge bluntness effects on the primary vortex separation and (2) vortex breakdown above the wing and its control. Regarding aspect (1), the VFE-2 delta wing with sharp leading-edge (SLE) and medium radius round leading-edge (MRLE) are considered for three angles of attack α (13°, 18°, and 23°) leading to different overall flow characteristics. The numerical simulations correctly predict the main flow phenomena and are quantitatively in reasonable to good agreement with experimental measurements of steady and unsteady surface pressures, velocity distributions, and vortex breakdown position and frequency. Regarding aspect (2), flow control by oscillating control surfaces and flow control by a geometric modification leading to an injection of fluid from the pressure side are investigated for the SLE at α = 28°. Considering the influence on vortex breakdown position, the numerical simulations confirm experimental observations regarding oscillating control surfaces, and show promising potential for flow control.
AB - We performed wall-modeled large-eddy simulation of the flow field around the VFE-2 delta wing, focusing on two aspects: (1) leading-edge bluntness effects on the primary vortex separation and (2) vortex breakdown above the wing and its control. Regarding aspect (1), the VFE-2 delta wing with sharp leading-edge (SLE) and medium radius round leading-edge (MRLE) are considered for three angles of attack α (13°, 18°, and 23°) leading to different overall flow characteristics. The numerical simulations correctly predict the main flow phenomena and are quantitatively in reasonable to good agreement with experimental measurements of steady and unsteady surface pressures, velocity distributions, and vortex breakdown position and frequency. Regarding aspect (2), flow control by oscillating control surfaces and flow control by a geometric modification leading to an injection of fluid from the pressure side are investigated for the SLE at α = 28°. Considering the influence on vortex breakdown position, the numerical simulations confirm experimental observations regarding oscillating control surfaces, and show promising potential for flow control.
UR - http://www.scopus.com/inward/record.url?scp=85067320121&partnerID=8YFLogxK
U2 - 10.2514/6.2015-2572
DO - 10.2514/6.2015-2572
M3 - Conference contribution
AN - SCOPUS:85067320121
SN - 9781624103636
T3 - 33rd AIAA Applied Aerodynamics Conference
BT - 33rd AIAA Applied Aerodynamics Conference
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - 33rd AIAA Applied Aerodynamics Conference, 2015
Y2 - 22 June 2015 through 26 June 2015
ER -