VRoboCoop - Trajectory Planning to Achieve Reliable and Trustworthy Human-Robot Collaboration

Philipp Zallinger, Lukas Buchner, Roman Froschauer, Karin Nachbagauer

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

The collaboration between humans and robots offers opportunities that are not achievable separately. However, a strategy for collaboration is required, as they differ in their behavior and perception. This work-in-progress paper outlines future research activities in this field, focusing on the integration of collision avoidance into robot movements. Therefore, trajectory planning is formulated as an optimization problem, which considers the human being but also finds the optimal trajectory according to a certain criterion. This reduces the cycle time or the energy required to drive the robot. The description as a multibody system enables a digital twin allowing planning in advance, but also the possibility of real-time control. This creates the basis for trust in the collaboration.

OriginalspracheEnglisch
Titel2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation, ETFA 2024
Redakteure/-innenTullio Facchinetti, Angelo Cenedese, Lucia Lo Bello, Stefano Vitturi, Thilo Sauter, Federico Tramarin
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350361230
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung29th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2024 - Padova, Italien
Dauer: 10 Sept. 202413 Sept. 2024

Publikationsreihe

NameIEEE International Conference on Emerging Technologies and Factory Automation, ETFA
ISSN (Print)1946-0740
ISSN (elektronisch)1946-0759

Konferenz

Konferenz29th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2024
Land/GebietItalien
OrtPadova
Zeitraum10/09/2413/09/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „VRoboCoop - Trajectory Planning to Achieve Reliable and Trustworthy Human-Robot Collaboration“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren