Visual repetition sampling for robot manipulation planning

En Yen Puang, Peter Lehner, Zoltan Csaba Marton, Maximilian Durner, Rudolph Triebel, Alin Albu-Schaffer

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

One of the main challenges in sampling-based motion planners is to find an efficient sampling strategy. While methods such as Rapidly-exploring Random Tree (RRT) have shown to be more reliable in complex environments than optimization-based methods, they often require longer planning times, which reduces their usability for real-time applications. Recently, biased sampling methods have shown to remedy this issue. For example Gaussian Mixture Models (GMMs) have been used to sample more efficiently in feasible regions of the configuration space. Once the GMM is learned, however, this approach does not adapt its biases to individual planning scene during inference. Hence, we propose in this work a more efficient sampling strategy to further bias the GMM based on visual input upon query. We employ an autoencoder trained entirely in simulation to extract features from depth images and use the latent representation to adjust the weights of each mixture components in the GMM. We show empirically that this improves the sampling efficiency of an RRT motion planner in both real and simulated scenes.

OriginalspracheEnglisch
Titel2019 International Conference on Robotics and Automation, ICRA 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten9236-9242
Seitenumfang7
ISBN (elektronisch)9781538660263
DOIs
PublikationsstatusVeröffentlicht - Mai 2019
Extern publiziertJa
Veranstaltung2019 International Conference on Robotics and Automation, ICRA 2019 - Montreal, Kanada
Dauer: 20 Mai 201924 Mai 2019

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Konferenz

Konferenz2019 International Conference on Robotics and Automation, ICRA 2019
Land/GebietKanada
OrtMontreal
Zeitraum20/05/1924/05/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Visual repetition sampling for robot manipulation planning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren