Visual Pursuit Control with Target Motion Learning via Gaussian Process

Junya Yamauchi, Thomas Beckers, Marco Omainska, Takeshi Hatanaka, Sandra Hirche, Masayuki Fujita

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

In this paper, we propose an observer-based visual pursuit control law which integrates target motion learning via Gaussian Process (GP). We consider two rigid bodies: a controlled rigid body with a visual sensor, and a target rigid body whose velocity is unknown. Furthermore, a vision-based motion observer which estimates the target motion is introduced. Then, we propose an enhanced vision-based nonlinear observer and visual pursuit control which employ target motion learning by GP, where the GP prediction is based on estimated relative rigid body motion. Then, we quantify the performance and prove stability by the notion of uniformly ultimately boundedness. Finally, we demonstrate the effectiveness of the proposed control law through simulations.

OriginalspracheEnglisch
Titel2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2020
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1365-1372
Seitenumfang8
ISBN (elektronisch)9781728110899
PublikationsstatusVeröffentlicht - 23 Sept. 2020
Veranstaltung59th Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2020 - Chiang Mai, Thailand
Dauer: 23 Sept. 202026 Sept. 2020

Publikationsreihe

Name2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2020

Konferenz

Konferenz59th Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2020
Land/GebietThailand
OrtChiang Mai
Zeitraum23/09/2026/09/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Visual Pursuit Control with Target Motion Learning via Gaussian Process“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren