Visual-Inertial Mapping with Non-Linear Factor Recovery

Vladyslav Usenko, Nikolaus Demmel, David Schubert, Jorg Stuckler, Daniel Cremers

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

136 Zitate (Scopus)

Abstract

Cameras and inertial measurement units are complementary sensors for ego-motion estimation and environment mapping. Their combination makes visual-inertial odometry (VIO) systems more accurate and robust. For globally consistent mapping, however, combining visual and inertial information is not straightforward. To estimate the motion and geometry with a set of images large baselines are required. Because of that, most systems operate on keyframes that have large time intervals between each other. Inertial data on the other hand quickly degrades with the duration of the intervals and after several seconds of integration, it typically contains only little useful information. In this letter, we propose to extract relevant information for visual-inertial mapping from visual-inertial odometry using non-linear factor recovery. We reconstruct a set of non-linear factors that make an optimal approximation of the information on the trajectory accumulated by VIO. To obtain a globally consistent map we combine these factors with loop-closing constraints using bundle adjustment. The VIO factors make the roll and pitch angles of the global map observable, and improve the robustness and the accuracy of the mapping. In experiments on a public benchmark, we demonstrate superior performance of our method over the state-of-The-Art approaches.

OriginalspracheEnglisch
Aufsatznummer8938825
Seiten (von - bis)422-429
Seitenumfang8
FachzeitschriftIEEE Robotics and Automation Letters
Jahrgang5
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - Apr. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Visual-Inertial Mapping with Non-Linear Factor Recovery“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren