Vision-Based Large-scale 3D Semantic Mapping for Autonomous Driving Applications

Qing Cheng, Niclas Zeller, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

6 Zitate (Scopus)

Abstract

In this paper, we present a complete pipeline for 3D semantic mapping solely based on a stereo camera system. The pipeline comprises a direct sparse visual odometry frontend as well as a back-end for global optimization including GNSS integration, and semantic 3D point cloud labeling. We propose a simple but effective temporal voting scheme which improves the quality and consistency of the 3D point labels. Qualitative and quantitative evaluations of our pipeline are performed on the KITTI-360 dataset. The results show the effectiveness of our proposed voting scheme and the capability of our pipeline for efficient large-scale 3D semantic mapping. The large-scale mapping capabilities of our pipeline is furthermore demonstrated by presenting a very large-scale semantic map covering 8000 km of roads generated from data collected by a fleet of vehicles.

OriginalspracheEnglisch
Titel2022 IEEE International Conference on Robotics and Automation, ICRA 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten9235-9242
Seitenumfang8
ISBN (elektronisch)9781728196817
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung39th IEEE International Conference on Robotics and Automation, ICRA 2022 - Philadelphia, USA/Vereinigte Staaten
Dauer: 23 Mai 202227 Mai 2022

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Konferenz

Konferenz39th IEEE International Conference on Robotics and Automation, ICRA 2022
Land/GebietUSA/Vereinigte Staaten
OrtPhiladelphia
Zeitraum23/05/2227/05/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Vision-Based Large-scale 3D Semantic Mapping for Autonomous Driving Applications“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren