Verifiable Obstacle Detection

Ayoosh Bansal, Hunmin Kim, Simon Yu, Bo Li, Naira Hovakimyan, Marco Caccamo, Lui Sha

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

Perception of obstacles remains a critical safety concern for autonomous vehicles. Real-world collisions have shown that the autonomy faults leading to fatal collisions originate from obstacle existence detection. Open source autonomous driving implementations show a perception pipeline with complex interdependent Deep Neural Networks. These networks are not fully verifiable, making them unsuitable for safety-critical tasks. In this work, we present a safety verification of an existing LiDAR based classical obstacle detection algorithm. We establish strict bounds on the capabilities of this obstacle detection algorithm. Given safety standards, such bounds allow for determining LiDAR sensor properties that would reliably satisfy the standards. Such analysis has as yet been unattainable for neural network based perception systems. We provide a rigorous analysis of the obstacle detection system with empirical results based on real-world sensor data.

OriginalspracheEnglisch
TitelProceedings - 2022 IEEE 33rd International Symposium on Software Reliability Engineering, ISSRE 2022
Herausgeber (Verlag)IEEE Computer Society
Seiten61-72
Seitenumfang12
ISBN (elektronisch)9781665451321
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung33rd IEEE International Symposium on Software Reliability Engineering, ISSRE 2022 - Charlotte, USA/Vereinigte Staaten
Dauer: 31 Okt. 20213 Nov. 2021

Publikationsreihe

NameProceedings - International Symposium on Software Reliability Engineering, ISSRE
Band2022-October
ISSN (Print)1071-9458

Konferenz

Konferenz33rd IEEE International Symposium on Software Reliability Engineering, ISSRE 2022
Land/GebietUSA/Vereinigte Staaten
OrtCharlotte
Zeitraum31/10/213/11/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Verifiable Obstacle Detection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren