Vehicle infrastructure cooperative localization using Factor Graphs

Dhiraj Gulati, Feihu Zhang, Daniel Clarke, Alois Knoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

13 Zitate (Scopus)

Abstract

Highly assisted and Autonomous Driving is dependent on the accurate localization of both the vehicle and other targets within the environment. With increasing traffic on roads and wider proliferation of low cost sensors, a vehicle-infrastructure cooperative localization scenario can provide improved performance over traditional mono-platform localization. The paper highlights the various challenges in the process and proposes a solution based on Factor Graphs which utilizes the concept of topology of vehicles. A Factor Graph represents probabilistic graphical model as a bipartite graph. It is used to add the inter-vehicle distance as constraints while localizing the vehicle. The proposed solution is easily scalable for many vehicles without increasing the execution complexity. Finally simulation indicates that incorporating the topology information as a state estimate can improve performance over the traditional Kalman Filter approach.

OriginalspracheEnglisch
Titel2016 IEEE Intelligent Vehicles Symposium, IV 2016
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1085-1090
Seitenumfang6
ISBN (elektronisch)9781509018215
DOIs
PublikationsstatusVeröffentlicht - 5 Aug. 2016
Veranstaltung2016 IEEE Intelligent Vehicles Symposium, IV 2016 - Gotenburg, Schweden
Dauer: 19 Juni 201622 Juni 2016

Publikationsreihe

NameIEEE Intelligent Vehicles Symposium, Proceedings
Band2016-August

Konferenz

Konferenz2016 IEEE Intelligent Vehicles Symposium, IV 2016
Land/GebietSchweden
OrtGotenburg
Zeitraum19/06/1622/06/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „Vehicle infrastructure cooperative localization using Factor Graphs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren