VECHR: A Dataset for Explainable and Robust Classification of Vulnerability Type in the European Court of Human Rights

Shanshan Xu, Leon Staufer, T. Y.S.S. Santosh, Oana Ichim, Corina Heri, Matthias Grabmair

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

Recognizing vulnerability is crucial for understanding and implementing targeted support to empower individuals in need. This is especially important at the European Court of Human Rights (ECtHR), where the court adapts convention standards to meet actual individual needs and thus to ensure effective human rights protection. However, the concept of vulnerability remains elusive at the ECtHR and no prior NLP research has dealt with it. To enable future work in this area, we present VECHR, a novel expert-annotated multi-label dataset comprised of vulnerability type classification and explanation rationale. We benchmark the performance of state-of-the-art models on VECHR from both the prediction and explainability perspective. Our results demonstrate the challenging nature of the task with lower prediction performance and limited agreement between models and experts. We analyze the robustness of these models in dealing with out-of-domain (OOD) data and observe limited overall performance. Our dataset poses unique challenges offering a significant room for improvement regarding performance, explainability, and robustness.

OriginalspracheEnglisch
TitelEMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings
Redakteure/-innenHouda Bouamor, Juan Pino, Kalika Bali
Herausgeber (Verlag)Association for Computational Linguistics (ACL)
Seiten11738-11752
Seitenumfang15
ISBN (elektronisch)9798891760608
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023 - Hybrid, Singapore, Singapur
Dauer: 6 Dez. 202310 Dez. 2023

Publikationsreihe

NameEMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings

Konferenz

Konferenz2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023
Land/GebietSingapur
OrtHybrid, Singapore
Zeitraum6/12/2310/12/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „VECHR: A Dataset for Explainable and Robust Classification of Vulnerability Type in the European Court of Human Rights“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren