Variational Inference Aided Estimation of Time Varying Channels

Benedikt Böck, Michael Baur, Valentina Rizzello, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

One way to improve the estimation of time varying channels is to incorporate knowledge of previous observations. In this context, Dynamical VAEs (DVAEs) build a promising deep learning (DL) framework which is well suited to learn the distribution of time series data. We introduce a new DVAE architecture, called k-MemoryMarkovVAE (k-MMVAE), whose sparsity can be controlled by an additional memory parameter. Following the approach in [1] we derive a k-MMVAE aided channel estimator which takes temporal correlations of successive observations into account. The results are evaluated on simulated channels by QuaDRiGa and show that the k-MMVAE aided channel estimator clearly outperforms other machine learning (ML) aided estimators which are either memoryless or naively extended to time varying channels without major adaptions.

OriginalspracheEnglisch
TitelICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781728163277
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023 - Rhodes Island, Griechenland
Dauer: 4 Juni 202310 Juni 2023

Publikationsreihe

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Band2023-June
ISSN (Print)1520-6149

Konferenz

Konferenz48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
Land/GebietGriechenland
OrtRhodes Island
Zeitraum4/06/2310/06/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Variational Inference Aided Estimation of Time Varying Channels“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren