Variational Gaussian approximation for the magnetic Schrödinger equation

Selina Burkhard, Benjamin Dörich, Marlis Hochbruck, Caroline Lasser

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

In the present paper we consider the semiclassical magnetic Schrödinger equation, which describes the dynamics of particles under the influence of a magnetic field. The solution of the time-dependent Schrödinger equation is approximated by a single Gaussian wave packet via the time-dependent Dirac-Frenkel variational principle. For the approximation we derive ordinary differential equations of motion for the parameters of the variational solution. Moreover, we prove L 2-error bounds and observable error bounds for the approximating Gaussian wave packet.

OriginalspracheEnglisch
Aufsatznummer295202
FachzeitschriftJournal of Physics A: Mathematical and Theoretical
Jahrgang57
Ausgabenummer29
DOIs
PublikationsstatusVeröffentlicht - 19 Juli 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Variational Gaussian approximation for the magnetic Schrödinger equation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren