Variational Autoencoder for Channel Estimation: Real-World Measurement Insights

Michael Baur, Benedikt Bock, Nurettin Turan, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

This work utilizes a variational autoencoder for channel estimation and evaluates it on real-world measurements. The estimator is trained solely on noisy channel observations and parameterizes an approximation to the mean squared error-optimal estimator by learning observation-dependent conditional first and second moments. The proposed estimator significantly outperforms related state-of-the-art estimators on real-world measurements. We investigate the effect of pre-training with synthetic data and find that the proposed estimator exhibits comparable results to the related estimators if trained on synthetic data and evaluated on the measurement data. Furthermore, pre-training on synthetic data also helps to reduce the required measurement training dataset size.

OriginalspracheEnglisch
TitelWSA 2024 - Proceedings of the 27th International Workshop on Smart Antennas
Redakteure/-innenThomas Uhle
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten117-122
Seitenumfang6
ISBN (elektronisch)9798350361995
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung27th International Workshop on Smart Antennas, WSA 2024 - Dresden, Deutschland
Dauer: 17 März 202419 März 2024

Publikationsreihe

NameWSA 2024 - Proceedings of the 27th International Workshop on Smart Antennas

Konferenz

Konferenz27th International Workshop on Smart Antennas, WSA 2024
Land/GebietDeutschland
OrtDresden
Zeitraum17/03/2419/03/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Variational Autoencoder for Channel Estimation: Real-World Measurement Insights“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren