TY - JOUR
T1 - Variable non-linear removal of viruses during transport through a saturated soil column
AU - Betancourt, Walter Q.
AU - Schijven, Jack
AU - Regnery, Julia
AU - Wing, Alexandre
AU - Morrison, Christina M.
AU - Drewes, Jörg E.
AU - Gerba, Charles P.
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/6
Y1 - 2019/6
N2 - Reduction of viral surrogates (bacteriophage MS2 and murine norovirus-1 [MNV-1]) and viruses naturally present in wastewater (enteroviruses, adenoviruses, Aichi viruses, reovirus, pepper mild mottle virus) was studied in a long-term experiment simulating soil-aquifer treatment of a non-disinfected secondary treated wastewater effluent blend using a 4.4 m deep saturated soil column (95% sand, 4% silt, 1% clay) with a hydraulic residence time of 15.4 days under predominantly anoxic redox conditions. Water samples were collected over a four-week period from the column inflow and outflow as well as from seven intermediate sampling ports at different depths. Removal of MS2 was 3.5 log10 over 4.4 m and removal of MNV-1 was 3 log10 over 0.3 m. Notably, MNV-1 was removed to below detection limit within 0.3 m of soil passage. In secondary treated wastewater effluent, MNV-1 RNA and MS2 RNA degraded at a first-order rate of 0.59 day−1 and 0.12 day−1, respectively. In 15.4 days, the time to pass the soil column, the RNA-degradation of MS2 would amount to 0.8 log10, and in one day that of MNV-1 0.3 log10 implying that attachment of MNV-1 and MS2 to the sandy soil took place. Among the indigenous viruses, genome copies reductions were observed for Aichi virus (4.9 log10) and for pepper mild mottle virus (4.4 log10). This study demonstrated that under saturated flow and predominantly anoxic redox conditions MS2 removal was non-linear and could be described well by a power-law relation. Pepper mild mottle virus was removed less than all of the other viruses studied, which substantiates field studies at managed aquifer recharge sites, suggesting it may be a conservative model/tracer for enteric virus transport through soil.
AB - Reduction of viral surrogates (bacteriophage MS2 and murine norovirus-1 [MNV-1]) and viruses naturally present in wastewater (enteroviruses, adenoviruses, Aichi viruses, reovirus, pepper mild mottle virus) was studied in a long-term experiment simulating soil-aquifer treatment of a non-disinfected secondary treated wastewater effluent blend using a 4.4 m deep saturated soil column (95% sand, 4% silt, 1% clay) with a hydraulic residence time of 15.4 days under predominantly anoxic redox conditions. Water samples were collected over a four-week period from the column inflow and outflow as well as from seven intermediate sampling ports at different depths. Removal of MS2 was 3.5 log10 over 4.4 m and removal of MNV-1 was 3 log10 over 0.3 m. Notably, MNV-1 was removed to below detection limit within 0.3 m of soil passage. In secondary treated wastewater effluent, MNV-1 RNA and MS2 RNA degraded at a first-order rate of 0.59 day−1 and 0.12 day−1, respectively. In 15.4 days, the time to pass the soil column, the RNA-degradation of MS2 would amount to 0.8 log10, and in one day that of MNV-1 0.3 log10 implying that attachment of MNV-1 and MS2 to the sandy soil took place. Among the indigenous viruses, genome copies reductions were observed for Aichi virus (4.9 log10) and for pepper mild mottle virus (4.4 log10). This study demonstrated that under saturated flow and predominantly anoxic redox conditions MS2 removal was non-linear and could be described well by a power-law relation. Pepper mild mottle virus was removed less than all of the other viruses studied, which substantiates field studies at managed aquifer recharge sites, suggesting it may be a conservative model/tracer for enteric virus transport through soil.
KW - Groundwater recharge
KW - Soil-aquifer treatment
KW - Soil-column, removal
KW - Viruses
UR - http://www.scopus.com/inward/record.url?scp=85064180700&partnerID=8YFLogxK
U2 - 10.1016/j.jconhyd.2019.04.002
DO - 10.1016/j.jconhyd.2019.04.002
M3 - Article
C2 - 30992142
AN - SCOPUS:85064180700
SN - 0169-7722
VL - 223
JO - Journal of Contaminant Hydrology
JF - Journal of Contaminant Hydrology
M1 - 103479
ER -