Variable cost functions' sequence design for model predictive control of IPMSM without weighting factor

Xuezhu Mei, Ran Zu, Fengxiang Wang, Ralph Kennel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

A model predictive control (MPC) based torque and flux control strategy with cascaded cost functions' optimization for electric drive systems is presented in this work. Based on the knowledge of previous step's cost functions' values, an intuitive decision-making logic for the sequence of cost function execution in an online self-adjustable manner is adopted. This eliminates the necessity of weighting factor tuning and calculation as in the conventional methods with a single aggregate cost function. The effectiveness and comparable overall performance of the proposed system are verified through simulations.

OriginalspracheEnglisch
Titel2018 IEEE International Conference on Information and Automation, ICIA 2018
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten500-505
Seitenumfang6
ISBN (elektronisch)9781538680698
DOIs
PublikationsstatusVeröffentlicht - Aug. 2018
Veranstaltung2018 IEEE International Conference on Information and Automation, ICIA 2018 - Wuyishan, Fujian, China
Dauer: 11 Aug. 201813 Aug. 2018

Publikationsreihe

Name2018 IEEE International Conference on Information and Automation, ICIA 2018

Konferenz

Konferenz2018 IEEE International Conference on Information and Automation, ICIA 2018
Land/GebietChina
OrtWuyishan, Fujian
Zeitraum11/08/1813/08/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Variable cost functions' sequence design for model predictive control of IPMSM without weighting factor“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren