TY - JOUR
T1 - Validity of wrist-worn activity trackers for estimating VO2max and energy expenditure
AU - Passler, Stefanie
AU - Bohrer, Julian
AU - Blöchinger, Lukas
AU - Senner, Veit
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/9
Y1 - 2019/9
N2 - Activity trackers are a simple and mostly low-priced method to capture physiological parameters. Despite the high number of wrist-worn devices, there is a lack of scientific validation. The purpose of this study was to assess whether the activity trackers represent a valid alternative to gold-standard methods in terms of estimating energy expenditure (EE) and maximum oxygen uptake (VO2max). Twenty-four healthy subjects participated in this study. In total, five commercially available wrist-worn devices were tested with regard to their validity of EE and/or VO2max. Estimated values were compared with indirect calorimetry. Validity of the activity trackers was determined by paired sample t-tests, mean absolute percentage errors (MAPE), Intraclass Correlation Coefficient, and Bland-Altman plots. Within the tested devices, differences in scattering in VO2max and EE could be observed. This results in a MAPE > 10% for all evaluations, except for the VO2max-estimation of the Garmin Forerunner 920XT (7.3%). The latter significantly underestimates the VO2max (t(23) = -2.37, p = 0.027), whereas the Garmin Vivosmart HR significantly overestimates the EE (t(23) = 2.44, p = 0.023). The tested devices did not show valid results concerning the estimation of VO2max and EE. Hence, the current wrist-worn activity trackers are most likely not accurate enough to be used for neither purposes in sports, nor in health care applications.
AB - Activity trackers are a simple and mostly low-priced method to capture physiological parameters. Despite the high number of wrist-worn devices, there is a lack of scientific validation. The purpose of this study was to assess whether the activity trackers represent a valid alternative to gold-standard methods in terms of estimating energy expenditure (EE) and maximum oxygen uptake (VO2max). Twenty-four healthy subjects participated in this study. In total, five commercially available wrist-worn devices were tested with regard to their validity of EE and/or VO2max. Estimated values were compared with indirect calorimetry. Validity of the activity trackers was determined by paired sample t-tests, mean absolute percentage errors (MAPE), Intraclass Correlation Coefficient, and Bland-Altman plots. Within the tested devices, differences in scattering in VO2max and EE could be observed. This results in a MAPE > 10% for all evaluations, except for the VO2max-estimation of the Garmin Forerunner 920XT (7.3%). The latter significantly underestimates the VO2max (t(23) = -2.37, p = 0.027), whereas the Garmin Vivosmart HR significantly overestimates the EE (t(23) = 2.44, p = 0.023). The tested devices did not show valid results concerning the estimation of VO2max and EE. Hence, the current wrist-worn activity trackers are most likely not accurate enough to be used for neither purposes in sports, nor in health care applications.
KW - Accuracy
KW - Consumer wearable devices
KW - Fitness trackers
KW - Monitoring
KW - Physical activity
KW - Sports watches
KW - Validation
UR - http://www.scopus.com/inward/record.url?scp=85071510034&partnerID=8YFLogxK
U2 - 10.3390/ijerph16173037
DO - 10.3390/ijerph16173037
M3 - Article
C2 - 31443347
AN - SCOPUS:85071510034
SN - 1661-7827
VL - 16
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
IS - 17
M1 - 3037
ER -