Using Voice Data to Facilitate Depression Risk Assessment in Primary Health Care

Abhay Goyal, Roger Ho Chun Man, Roy Ka Wei Lee, Koustuv Saha, Frederick L. Altice, Christian Poellabauer, Orestis Papakyriakopoulos, Lam Yin Cheung, Munmun De Choudhury, Kanica Allagh, Navin Kumar

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Voice-only telehealth is often more practical for lower-income patients who may lack stable internet connections. Thus, our study focused on using voice data to predict depression risk. The objectives were to: 1) Collect voice data from 24 people (12 with depression and 12 without mental health or major health condition diagnoses); 2) Build a machine learning model to predict depression risk. TPOT, an autoML tool, was used to select the best machine learning algorithm, which was the K-nearest neighbors classifier. The selected model had high performance in classifying depression risk (Precision: 0.98, Recall: 0.93, F1-Score: 0.96), compared to previous models. These findings may lead to a range of tools to help screen for and treat depression.

OriginalspracheEnglisch
TitelCompanion Proceedings of the 16th ACM Web Science Conference, Websci Companion 2024 - Reflecting on the Web, AI and Society
Redakteure/-innenRaphael Heiberger, Ujwal Gadiraju, Marc Spaniol, Katharina Kinder-Kurlanda, Agnieszka Falenska, Afra Mashhadi, Jun Sun, Sierra Kaiser, Steffen Staab
Herausgeber (Verlag)Association for Computing Machinery, Inc
Seiten17-18
Seitenumfang2
ISBN (elektronisch)9798400704536
DOIs
PublikationsstatusVeröffentlicht - 21 Mai 2024
Veranstaltung16th ACM Web Science Conference, Websci Companion 2024 - Stuttgart, Deutschland
Dauer: 21 Mai 202424 Mai 2024

Publikationsreihe

NameCompanion Proceedings of the 16th ACM Web Science Conference, Websci Companion 2024 - Reflecting on the Web, AI and Society

Konferenz

Konferenz16th ACM Web Science Conference, Websci Companion 2024
Land/GebietDeutschland
OrtStuttgart
Zeitraum21/05/2424/05/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Using Voice Data to Facilitate Depression Risk Assessment in Primary Health Care“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren