Using segmented 3D point clouds for accurate likelihood approximation in human pose tracking

Nicolas H. Lehment, Moritz Kaiser, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

The observation likelihood approximation is a central problem in stochastic human pose tracking. In this paper, we present a new approach to quantify the correspondence between hypothetical and observed human poses in depth images. Our approach is based on segmented point clouds, enabling accurate approximations even under self-occlusion and in the absence of color or texture cues. The segmentation step extracts small regions of high saliency such as hands or arms and ensures that the information contained in these regions is not marginalized by larger, less salient regions such as the chest. The proposed approximation function is evaluated on both synthetic and real camera data. In addition, we compare our approximation function against the corresponding function used by a state-of-the-art pose tracker.

OriginalspracheEnglisch
Titel2011 IEEE International Conference on Computer Vision Workshops, ICCV Workshops 2011
Seiten406-413
Seitenumfang8
DOIs
PublikationsstatusVeröffentlicht - 2011
Veranstaltung2011 IEEE International Conference on Computer Vision Workshops, ICCV Workshops 2011 - Barcelona, Spanien
Dauer: 6 Nov. 201113 Nov. 2011

Publikationsreihe

NameProceedings of the IEEE International Conference on Computer Vision

Konferenz

Konferenz2011 IEEE International Conference on Computer Vision Workshops, ICCV Workshops 2011
Land/GebietSpanien
OrtBarcelona
Zeitraum6/11/1113/11/11

Fingerprint

Untersuchen Sie die Forschungsthemen von „Using segmented 3D point clouds for accurate likelihood approximation in human pose tracking“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren