Using Reinforcement Learning in a Game-like Setup for Automated Process Synthesis without Prior Process Knowledge

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

5 Zitate (Scopus)

Abstract

The present work uses reinforcement learning (RL) for automated flowsheet synthesis. The task of synthesizing a flowsheet is reformulated into a two-player game, in which an agent learns by self-play without prior knowledge. The hierarchical RL scheme developed in our previous work (Göttl et al., 2021b) is coupled with an improved training process. The training process is analyzed in detail using the synthesis of ethyl tert-butyl ether (ETBE) as an example. This analysis uncovers how the agent's evolution is driven by the two-player setup.

OriginalspracheEnglisch
TitelComputer Aided Chemical Engineering
Herausgeber (Verlag)Elsevier B.V.
Seiten1555-1560
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - Jan. 2022

Publikationsreihe

NameComputer Aided Chemical Engineering
Band49
ISSN (Print)1570-7946

Fingerprint

Untersuchen Sie die Forschungsthemen von „Using Reinforcement Learning in a Game-like Setup for Automated Process Synthesis without Prior Process Knowledge“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren