Using Redundancy in a Sensor Network to Compensate Sensor Failures

Nicolas P. Winkler, Patrick P. Neumann, Erik Schaffernicht, Achim J. Lilienthal

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

Wireless sensor networks provide occupational health experts with valuable information about the distribution of air pollutants in an environment. However, especially low-cost sensors may produce faulty measurements or fail completely. Consequently, not only spatial coverage but also redundancy should be a design criterion for the deployment of a sensor network. For a sensor network deployed in a steel factory, we analyze the correlations between sensors and build machine learning forecasting models, to investigate how well the sensor network can compensate for the outage of sensors. While our results show promising prediction quality of the models, they also indicate the presence of spatially very limited events. We, therefore, conclude that initial measurements with, e.g., mobile units, could help to identify important locations to design redundant sensor networks.

OriginalspracheEnglisch
Titel2021 IEEE Sensors, SENSORS 2021 - Conference Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781728195018
DOIs
PublikationsstatusVeröffentlicht - 2021
Extern publiziertJa
Veranstaltung20th IEEE Sensors, SENSORS 2021 - Virtual, Online, Australien
Dauer: 31 Okt. 20214 Nov. 2021

Publikationsreihe

NameProceedings of IEEE Sensors
Band2021-October
ISSN (Print)1930-0395
ISSN (elektronisch)2168-9229

Konferenz

Konferenz20th IEEE Sensors, SENSORS 2021
Land/GebietAustralien
OrtVirtual, Online
Zeitraum31/10/214/11/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Using Redundancy in a Sensor Network to Compensate Sensor Failures“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren