Using Machine Learning to Predict POI Occupancy to Reduce Overcrowding

Jessica Bollenbach, Stefan Neubig, Andreas Hein, Robert Keller, Helmut Krcmar

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Due to the rapid growth of the tourism industry, associated effects like overcrowding, overtourism, and increasing greenhouse gas emissions lead to unsustainable development. A prerequisite for avoiding those adverse effects is the prediction of occupancy. The present study elaborates on the applicability and performance of various prediction models by taking a case study of beach occupancy data in Scharbeutz, Germany. The case study compares different machine learning models once as supervised machine learning models and once as time series models with a persistence model. XGBoost and Random Forest as time series demonstrate the most accurate prediction, followed by the supervised XGBoost model. However, the short prediction span of time series models is a disadvantage for longer-term visitor management to avoid the explained unsustainable effects through steering measures, so depending on the use case, the XGBoost model is to be favoured.

OriginalspracheEnglisch
TitelINFORMATIK 2022 - Informatik in den Naturwissenschaften
Redakteure/-innenDaniel Demmler, Daniel Krupka, Hannes Federrath
Herausgeber (Verlag)Gesellschaft fur Informatik (GI)
Seiten393-408
Seitenumfang16
ISBN (elektronisch)9783885797203
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 Informatik in den Naturwissenschaften, INFORMATIK 2022 - 2022 Computer Science in the Natural Sciences, INFORMATIK 2022 - Hamburg, Deutschland
Dauer: 26 Sept. 202230 Sept. 2022

Publikationsreihe

NameLecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft fur Informatik (GI)
BandP-326
ISSN (Print)1617-5468

Konferenz

Konferenz2022 Informatik in den Naturwissenschaften, INFORMATIK 2022 - 2022 Computer Science in the Natural Sciences, INFORMATIK 2022
Land/GebietDeutschland
OrtHamburg
Zeitraum26/09/2230/09/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Using Machine Learning to Predict POI Occupancy to Reduce Overcrowding“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren