Using Graph Neural Networks for Timing Estimations of RTL Intermediate Representations

Daniela Sánchez Lopera, Ishwor Subedi, Wolfgang Ecker

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Accurate timing information of a digital design is available only after routing. Timing violations require corrective changes, even at the register-transfer level (RTL). Thus, timing feedback at RTL could guide micro-architecture search and reduce design iterations. However, this feedback is time-consuming, requiring synthesis and timing analysis runs. Related works have recognized timing estimations' value in the digital design flow. Most approaches use the pre-routing gate-level netlist as input, losing the RTL mapping. Others estimate either individual component delays or only global timing metrics from RTL designs. This paper uses graph neural networks (GNNs) to estimate a design's maximum arrival time (AT) by leveraging component delay and slew prediction. Our approach takes as input an RTL intermediate graph representation provided by an RTL generation tool and timing metrics collected from open-source synthesis tools. Experimental results show that the best architecture achieves a coefficient of determination R2 of 0.82 and a maximum error of 3.79 ns for the AT prediction. The GNNs inference runtimes are three orders of magnitude faster than running RTL generation, synthesis, and timing analysis tools. Fast yet accurate estimations of ATs of an RTL could guide micro-architecture search at the early stages of the design.

OriginalspracheEnglisch
Titel2023 ACM/IEEE 5th Workshop on Machine Learning for CAD, MLCAD 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350309553
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung5th ACM/IEEE Workshop on Machine Learning for CAD, MLCAD 2023 - Snowbird, USA/Vereinigte Staaten
Dauer: 10 Sept. 202313 Sept. 2023

Publikationsreihe

Name2023 ACM/IEEE 5th Workshop on Machine Learning for CAD, MLCAD 2023

Konferenz

Konferenz5th ACM/IEEE Workshop on Machine Learning for CAD, MLCAD 2023
Land/GebietUSA/Vereinigte Staaten
OrtSnowbird
Zeitraum10/09/2313/09/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Using Graph Neural Networks for Timing Estimations of RTL Intermediate Representations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren