Using Gaze Transition Entropy to Detect Classroom Discourse in a Virtual Reality Classroom

Philipp Stark, Alexander J. Jung, Jens Uwe Hahn, Enkelejda Kasneci, Richard Göllner

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

This paper explores gaze entropy as a metric for detecting classroom discourse events in a virtual reality (VR) classroom. Using data from a laboratory experiment with N = 240 secondary school students, we distinguished between events of teacher-centered classroom discourse (question, hand raising, answer) and teacher explanation by analyzing their transition and stationary gaze entropy. Employing multi-level regression models, both entropy measures effectively discriminated between the two events and distinguished different levels of classroom participation as indicated by the degree of hand-raising by virtual students. Furthermore, using both measures in a logistic regression model, the potential of gaze entropy could be demonstrated by predicting the two events with 67% accuracy. By analyzing transition and stationary entropy, the study attempts to uncover different gaze patterns associated with learning events in a virtual classroom. The results contribute to the research and development of VR scenarios that help to simulate effective learning environments.

OriginalspracheEnglisch
TitelProceedings - ETRA 2024, ACM Symposium on Eye Tracking Research and Applications
Redakteure/-innenStephen N. Spencer
Herausgeber (Verlag)Association for Computing Machinery
ISBN (elektronisch)9798400706073
DOIs
PublikationsstatusVeröffentlicht - 4 Juni 2024
Veranstaltung16th Annual ACM Symposium on Eye Tracking Research and Applications, ETRA 2024 - Hybrid, Glasgow, Großbritannien/Vereinigtes Königreich
Dauer: 4 Juni 20247 Juni 2024

Publikationsreihe

NameEye Tracking Research and Applications Symposium (ETRA)

Konferenz

Konferenz16th Annual ACM Symposium on Eye Tracking Research and Applications, ETRA 2024
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtHybrid, Glasgow
Zeitraum4/06/247/06/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Using Gaze Transition Entropy to Detect Classroom Discourse in a Virtual Reality Classroom“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren