User-Centric Green Light Optimized Speed Advisory with Reinforcement Learning

Anna Lena Schlamp, Jeremias Gerner, Klaus Bogenberger, Stefanie Schmidtner

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

We address Green Light Optimized Speed Advisory (GLOSA), an application in the field of Intelligent Transportation Systems (ITS) for improving traffic flow and reducing emissions in urban areas. The aim of this study is to improve GLOSA, both by including traffic condition information, more specifically queue length, into the calculation of an optimal speed as well as by applying Reinforcement Learning (RL). We incorporate rule-based classic GLOSA and RL-based GLOSA in a common comparable simulation environment. In doing so, performance is also examined considering action frequency in order to create a user-centric GLOSA system for settings of non-automated driving. Results show that incorporating queue information positively influences the performance of both, RL-agents and classic GLOSA systems. Both algorithms achieve the best results at the lowest investigated action frequency of an update every second. As the frequency decreases, the improvement compared to the baseline without any GLOSA diminishes. However, the decline is more pronounced for the RL-agent, so the classic GLOSA algorithm delivers better results on average when the action frequency reaches five seconds. We make the source code of this work available under: github.com/urbanAIthi/GLOSA-RL.

OriginalspracheEnglisch
Titel2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten3463-3470
Seitenumfang8
ISBN (elektronisch)9798350399462
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023 - Bilbao, Spanien
Dauer: 24 Sept. 202328 Sept. 2023

Publikationsreihe

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
ISSN (Print)2153-0009
ISSN (elektronisch)2153-0017

Konferenz

Konferenz26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023
Land/GebietSpanien
OrtBilbao
Zeitraum24/09/2328/09/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „User-Centric Green Light Optimized Speed Advisory with Reinforcement Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren