Urban-StyleGAN: Learning to Generate and Manipulate Images of Urban Scenes

George Eskandar, Youssef Farag, Tarun Yenamandra, Daniel Cremers, Karim Guirguis, Bin Yang

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

A promise of Generative Adversarial Networks (GANs) is to provide cheap photorealistic data for training and validating AI models in autonomous driving. Despite their huge success, their performance on complex images featuring multiple objects is understudied. While some frameworks produce high-quality street scenes with little to no control over the image content, others offer more control at the expense of high-quality generation. A common limitation of both approaches is the use of global latent codes for the whole image, which hinders the learning of independent object distributions. Motivated by SemanticStyleGAN (SSG), a recent work on latent space disentanglement in human face generation, we propose a novel framework, Urban-StyleGAN, for urban scene generation and manipulation. We find that a straightforward application of SSG leads to poor results because urban scenes are more complex than human faces. To provide a more compact yet disentangled latent representation, we develop a class grouping strategy wherein individual classes are grouped into super-classes. Moreover, we employ an unsupervised latent exploration algorithm in the S-space of the generator and show that it is more efficient than the conventional W+ -space in controlling the image content. Results on the Cityscapes and Mapillary datasets show the proposed approach achieves significantly more controllability and improved image quality than previous approaches on urban scenes and is on par with general-purpose non-controllable generative models (like StyleGAN2) in terms of quality.

OriginalspracheEnglisch
TitelIV 2023 - IEEE Intelligent Vehicles Symposium, Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350346916
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung34th IEEE Intelligent Vehicles Symposium, IV 2023 - Anchorage, USA/Vereinigte Staaten
Dauer: 4 Juni 20237 Juni 2023

Publikationsreihe

NameIEEE Intelligent Vehicles Symposium, Proceedings
Band2023-June

Konferenz

Konferenz34th IEEE Intelligent Vehicles Symposium, IV 2023
Land/GebietUSA/Vereinigte Staaten
OrtAnchorage
Zeitraum4/06/237/06/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Urban-StyleGAN: Learning to Generate and Manipulate Images of Urban Scenes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren