Unsupervised Parameter Estimation using Model-based Decoder

Franz Weiser, Michael Baur, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

In this work, we consider the use of a model-based decoder in combination with an unsupervised learning strategy for direction-of-arrival (DoA) estimation. Relying only on unlabeled training data, our analysis shows that we can outperform existing unsupervised machine learning methods and classical methods. The proposed approach consists of introducing a model-based decoder in an autoencoder architecture, leading to a meaningful representation of the statistical model in the latent space of the autoencoder. Our numerical simulations show that the performance of the presented approach is not affected by correlated signals and performs well for both, uncorrelated and correlated, scenarios. This is a result of the fact that, in the proposed framework, the signal covariance matrix and the DOAs are estimated simultaneously.

OriginalspracheEnglisch
Titel2023 IEEE 24th International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2023 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten571-575
Seitenumfang5
ISBN (elektronisch)9781665496261
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung24th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2023 - Shanghai, China
Dauer: 25 Sept. 202328 Sept. 2023

Publikationsreihe

NameIEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC

Konferenz

Konferenz24th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2023
Land/GebietChina
OrtShanghai
Zeitraum25/09/2328/09/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Unsupervised Parameter Estimation using Model-based Decoder“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren