Unsupervised image partitioning with semidefinite programming

Jens Keuchel, Christoph Schnörr, Christian Schellewald, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

We apply a novel optimization technique, semidefinite programming, to the unsupervised partitioning of images. Representing images by graphs which encode pairwise (dis)similarities of local image features, a partition of the image into coherent groups is computed by determining optimal balanced graph cuts. Unlike recent work in the literature, we do not make any assumption concerning the objective criterion like metric pairwise interactions, for example. Moreover, no tuning parameter is necessary to compute the solution. We prove that, from the optimization point of view, our approach cannot perform worse than spectral relaxation approaches which, conversely, may completely fail for the unsupervised choice of the eigenvector threshold.

OriginalspracheEnglisch
TitelPattern Recognition - 24th DAGM Symposium, Proceedings
Redakteure/-innenLuc Van Gool, Luc Van Gool, Luc Van Gool
Herausgeber (Verlag)Springer Verlag
Seiten141-149
Seitenumfang9
ISBN (Print)354044209X, 9783540442097
DOIs
PublikationsstatusVeröffentlicht - 2002
Extern publiziertJa
Veranstaltung24th Symposium of the German Pattern Recognition Association, DAGM 2002 - Zurich, Schweiz
Dauer: 16 Sept. 200218 Sept. 2002

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band2449 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz24th Symposium of the German Pattern Recognition Association, DAGM 2002
Land/GebietSchweiz
OrtZurich
Zeitraum16/09/0218/09/02

Fingerprint

Untersuchen Sie die Forschungsthemen von „Unsupervised image partitioning with semidefinite programming“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren