Unsupervised discovery of repetitive objects

Jiwon Shin, Rudolph Triebel, Roland Siegwart

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

18 Zitate (Scopus)

Abstract

We present a novel approach for unsupervised discovery of repetitive objects from 3D point clouds. Our method assumes that objects are non-deformable and uses multiple occurrences of an object as the evidence for its existence. We segment input range data by superpixel segmentation and extract features for each segment. We search for a group of segments where each segment matches a segment in another group using a joint compatibility test. The discovered objects are then verified by the Iterative Closest Point algorithm to remove false matches. The presented method was tested on real data of complex objects. The experiments demonstrate that the proposed approach is capable of finding objects that occur multiple times in a scene and distinguish apart those objects of different types.

OriginalspracheEnglisch
Titel2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Seiten5041-5046
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - 2010
Extern publiziertJa
Veranstaltung2010 IEEE International Conference on Robotics and Automation, ICRA 2010 - Anchorage, AK, USA/Vereinigte Staaten
Dauer: 3 Mai 20107 Mai 2010

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Konferenz

Konferenz2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Land/GebietUSA/Vereinigte Staaten
OrtAnchorage, AK
Zeitraum3/05/107/05/10

Fingerprint

Untersuchen Sie die Forschungsthemen von „Unsupervised discovery of repetitive objects“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren