TY - GEN
T1 - Unlocking Past Information
T2 - 35th IEEE Intelligent Vehicles Symposium, IV 2024
AU - Rößle, Dominik
AU - Gerner, Jeremias
AU - Bogenberger, Klaus
AU - Cremers, Daniel
AU - Schmidtner, Stefanie
AU - Schön, Torsten
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - Accurate and comprehensive Bird's Eye View (BEV) semantic segmentation is essential for ensuring safe and proactive navigation in autonomous driving. Although cooperative perception has exceeded the detection capabilities of single-agent systems, prevalent camera-based algorithms in cooperative perception neglect valuable information derived from historical observations. This limitation becomes critical during sensor failures or communication issues as cooperative perception reverts to single-agent perception, leading to degraded performance and incomplete BEV segmentation maps. This paper introduces TempCoBEV, a temporal module designed to incorporate historical cues into current observations, thereby improving the quality and reliability of BEV map segmentations. We propose an importance-guided attention architecture to effectively integrate temporal information that prioritizes relevant properties for BEV map segmentation. TempCoBEV is an independent temporal module that seamlessly integrates into state-of-the-art camera-based cooperative perception models. We demonstrate through extensive experiments on the OPV2V dataset that TempCoBEV performs better than non-temporal models in predicting current and future BEV map segmentations, particularly in scenarios involving communication failures. We show the efficacy of TempCoBEV and its capability to integrate historical cues into the current BEV map, improving predictions under optimal communication conditions by up to 2% and under communication failures by up to 19%. The code is available at https://github.com/cvims/TempCoBEV.
AB - Accurate and comprehensive Bird's Eye View (BEV) semantic segmentation is essential for ensuring safe and proactive navigation in autonomous driving. Although cooperative perception has exceeded the detection capabilities of single-agent systems, prevalent camera-based algorithms in cooperative perception neglect valuable information derived from historical observations. This limitation becomes critical during sensor failures or communication issues as cooperative perception reverts to single-agent perception, leading to degraded performance and incomplete BEV segmentation maps. This paper introduces TempCoBEV, a temporal module designed to incorporate historical cues into current observations, thereby improving the quality and reliability of BEV map segmentations. We propose an importance-guided attention architecture to effectively integrate temporal information that prioritizes relevant properties for BEV map segmentation. TempCoBEV is an independent temporal module that seamlessly integrates into state-of-the-art camera-based cooperative perception models. We demonstrate through extensive experiments on the OPV2V dataset that TempCoBEV performs better than non-temporal models in predicting current and future BEV map segmentations, particularly in scenarios involving communication failures. We show the efficacy of TempCoBEV and its capability to integrate historical cues into the current BEV map, improving predictions under optimal communication conditions by up to 2% and under communication failures by up to 19%. The code is available at https://github.com/cvims/TempCoBEV.
UR - http://www.scopus.com/inward/record.url?scp=85199753266&partnerID=8YFLogxK
U2 - 10.1109/IV55156.2024.10588608
DO - 10.1109/IV55156.2024.10588608
M3 - Conference contribution
AN - SCOPUS:85199753266
T3 - IEEE Intelligent Vehicles Symposium, Proceedings
SP - 2220
EP - 2225
BT - 35th IEEE Intelligent Vehicles Symposium, IV 2024
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 2 June 2024 through 5 June 2024
ER -