Unknown Object Segmentation from Stereo Images

Maximilian Durner, Wout Boerdijk, Martin Sundermeyer, Werner Friedl, Zoltan Csaba Marton, Rudolph Triebel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

31 Zitate (Scopus)

Abstract

Although instance-aware perception is a key prerequisite for many autonomous robotic applications, most of the methods only partially solve the problem by focusing solely on known object categories. However, for robots interacting in dynamic and cluttered environments, this is not realistic and severely limits the range of potential applications. Therefore, we propose a novel object instance segmentation approach that does not require any semantic or geometric information of the objects beforehand. In contrast to existing works, we do not explicitly use depth data as input, but rely on the insight that slight viewpoint changes, which for example are provided by stereo image pairs, are often sufficient to determine object boundaries and thus to segment objects. Focusing on the versatility of stereo sensors, we employ a transformer-based architecture that maps directly from the pair of input images to the object instances. This has the major advantage that instead of a noisy, and potentially incomplete depth map as an input, on which the segmentation is computed, we use the original image pair to infer the object instances and a dense depth map. In experiments in several different application domains, we show that our Instance Stereo Transformer (INSTR) algorithm outperforms current state-of-the-art methods that are based on depth maps. Training code and pretrained models are available at https://github.com/DLR-RM/instr.

OriginalspracheEnglisch
TitelIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten4823-4830
Seitenumfang8
ISBN (elektronisch)9781665417143
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021 - Prague, Tschechische Republik
Dauer: 27 Sept. 20211 Okt. 2021

Publikationsreihe

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (elektronisch)2153-0866

Konferenz

Konferenz2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
Land/GebietTschechische Republik
OrtPrague
Zeitraum27/09/211/10/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Unknown Object Segmentation from Stereo Images“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren