Understanding and Interpreting the Impact of User Context in Hate Speech Detection

Edoardo Mosca, Maximilian Wich, Georg Groh

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

27 Zitate (Scopus)

Abstract

As hate speech spreads on social media and online communities, research continues to work on its automatic detection. Recently, recognition performance has been increasing thanks to advances in deep learning and the integration of user features. This work investigates the effects that such features can have on a detection model. Unlike previous research, we show that simple performance comparison does not expose the full impact of including contextualand user information. By leveraging explainability techniques, we show (1) that user features play a role in the model's decision and (2) how they affect the feature space learned by the model. Besides revealing that-and also illustrating why-user features are the reason for performance gains, we show how such techniques can be combined to better understand the model and to detect unintended bias.

OriginalspracheEnglisch
TitelSocialNLP 2021 - 9th International Workshop on Natural Language Processing for Social Media, Proceedings of the Workshop
Redakteure/-innenLun-Wei Ku, Cheng-Te Li
Herausgeber (Verlag)Association for Computational Linguistics (ACL)
Seiten91-102
Seitenumfang12
ISBN (elektronisch)9781954085329
PublikationsstatusVeröffentlicht - 2021
Veranstaltung9th International Workshop on Natural Language Processing for Social Media, SocialNLP 2021 - Virtual, Online
Dauer: 10 Juni 2021 → …

Publikationsreihe

NameSocialNLP 2021 - 9th International Workshop on Natural Language Processing for Social Media, Proceedings of the Workshop

Konferenz

Konferenz9th International Workshop on Natural Language Processing for Social Media, SocialNLP 2021
OrtVirtual, Online
Zeitraum10/06/21 → …

Fingerprint

Untersuchen Sie die Forschungsthemen von „Understanding and Interpreting the Impact of User Context in Hate Speech Detection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren