Uncertainty Quantification For Learned ISTA

Frederik Hoppe, Claudio Mayrink Verdun, Hannah Laus, Felix Krahmer, Holger Rauhut

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Model-based deep learning solutions to inverse problems have attracted increasing attention in recent years as they bridge state-of-the-art numerical performance with interpretability. In addition, the incorporated prior domain knowledge can make the training more efficient as the smaller number of parameters allows the training step to be executed with smaller datasets. Algorithm unrolling schemes stand out among these model-based learning techniques. Despite their rapid advancement and their close connection to traditional high-dimensional statistical methods, they lack certainty estimates and a theory for uncertainty quantification is still elusive. This work provides a step towards closing this gap proposing a rigorous way to obtain confidence intervals for the LISTA estimator.

OriginalspracheEnglisch
TitelProceedings of the 2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing, MLSP 2023
Redakteure/-innenDanilo Comminiello, Michele Scarpiniti
Herausgeber (Verlag)IEEE Computer Society
ISBN (elektronisch)9798350324112
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung33rd IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2023 - Rome, Italien
Dauer: 17 Sept. 202320 Sept. 2023

Publikationsreihe

NameIEEE International Workshop on Machine Learning for Signal Processing, MLSP
Band2023-September
ISSN (Print)2161-0363
ISSN (elektronisch)2161-0371

Konferenz

Konferenz33rd IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2023
Land/GebietItalien
OrtRome
Zeitraum17/09/2320/09/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Uncertainty Quantification For Learned ISTA“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren