Abstract
This paper studies the effect of uncertainty, using random perturbations, on area preserving maps of R2 to itself. We focus on the standard map and a discrete Duffing oscillator as specific examples. We relate the level of uncertainty to the large scale features in the dynamics in a precise way. We also study the effect of such perturbations on bifurcations in such maps. The main tools used for these investigations are a study of the eigenfunction and eigenvalue structure of the associated Perron-Frobenius operator along with set oriented methods for the numerical computations.
Originalsprache | Englisch |
---|---|
Aufsatznummer | WeB12.1 |
Seiten (von - bis) | 2225-2230 |
Seitenumfang | 6 |
Fachzeitschrift | Proceedings of the IEEE Conference on Decision and Control |
Jahrgang | 2 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2004 |
Extern publiziert | Ja |
Veranstaltung | 2004 43rd IEEE Conference on Decision and Control (CDC) - Nassau, Bahamas Dauer: 14 Dez. 2004 → 17 Dez. 2004 |