Uncertainty Aware Review Hallucination for Science Article Classification

Korbinian Friedl, Georgios Rizos, Lukas Stappen, Madina Hasan, Lucia Specia, Thomas Hain, Björn W. Schuller

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

The high subjectivity and costs inherent in peer reviewing have recently motivated the preliminary design of machine learning-based acceptance decision methods. However, such approaches are limited in that they: a) do not explore the usage of both the reviewer and area chair recommendations, b) do not explicitly model subjectivity on a per submission basis, and c) are not applicable in realistic settings, by assuming that review texts are available at test time, when these are exactly the inputs that should be considered to be missing in this application. We propose to utilise methods that model the aleatory uncertainty of the submissions, while also exploring different loss importance interpolations between area chair and reviewers' recommendations. We also propose a modality hallucination approach to impute review representations at test time, providing the first realistic evaluation framework for this challenging task.

OriginalspracheEnglisch
TitelFindings of the Association for Computational Linguistics
UntertitelACL-IJCNLP 2021
Redakteure/-innenChengqing Zong, Fei Xia, Wenjie Li, Roberto Navigli
Herausgeber (Verlag)Association for Computational Linguistics (ACL)
Seiten5004-5009
Seitenumfang6
ISBN (elektronisch)9781954085541
PublikationsstatusVeröffentlicht - 2021
Extern publiziertJa
VeranstaltungFindings of the Association for Computational Linguistics: ACL-IJCNLP 2021 - Virtual, Online
Dauer: 1 Aug. 20216 Aug. 2021

Publikationsreihe

NameFindings of the Association for Computational Linguistics: ACL-IJCNLP 2021

Konferenz

KonferenzFindings of the Association for Computational Linguistics: ACL-IJCNLP 2021
OrtVirtual, Online
Zeitraum1/08/216/08/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Uncertainty Aware Review Hallucination for Science Article Classification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren