Ultra-NeRF: Neural Radiance Fields for Ultrasound Imaging

Magdalena Wysocki, Mohammad Farid Azampour, Christine Eilers, Benjamin Busam, Mehrdad Salehi, Nassir Navab

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

6 Zitate (Scopus)

Abstract

We present a physics-enhanced implicit neural representation (INR) for ultrasound (US) imaging that learns tissue properties from overlapping US sweeps. Our proposed method leverages a ray-tracing-based neural rendering for novel view US synthesis. Recent publications demonstrated that INR models could encode a representation of a three-dimensional scene from a set of two-dimensional US frames. However, these models fail to consider the view-dependent changes in appearance and geometry intrinsic to US imaging. In our work, we discuss direction-dependent changes in the scene and show that a physics-inspired rendering improves the fidelity of US image synthesis. In particular, we demonstrate experimentally that our proposed method generates geometrically accurate B-mode images for regions with ambiguous representation owing to view-dependent differences of the US images. We conduct our experiments using simulated B-mode US sweeps of the liver and acquired US sweeps of a spine phantom tracked with a robotic arm. The experiments corroborate that our method generates US frames that enable consistent volume compounding from previously unseen views. To the best of our knowledge, the presented work is the first to address view-dependent US image synthesis using INR.

OriginalspracheEnglisch
Seiten (von - bis)382-401
Seitenumfang20
FachzeitschriftProceedings of Machine Learning Research
Jahrgang227
PublikationsstatusVeröffentlicht - 2023
Veranstaltung6th International Conference on Medical Imaging with Deep Learning, MIDL 2023 - Nashville, USA/Vereinigte Staaten
Dauer: 10 Juli 202312 Juli 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Ultra-NeRF: Neural Radiance Fields for Ultrasound Imaging“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren