UAV Path Planning using Global and Local Map Information with Deep Reinforcement Learning

Mirco Theile, Harald Bayerlein, Richard Nai, David Gesbert, Marco Caccamo

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

30 Zitate (Scopus)

Abstract

Path planning methods for autonomous unmanned aerial vehicles (UAVs) are typically designed for one specific type of mission. This work presents a method for autonomous UAV path planning based on deep reinforcement learning (DRL) that can be applied to a wide range of mission scenarios. Specifically, we compare coverage path planning (CPP), where the UAV's goal is to survey an area of interest to data harvesting (DH), where the UAV collects data from distributed Internet of Things (IoT) sensor devices. By exploiting structured map information of the environment, we train double deep Q-networks (DDQNs) with identical architectures on both distinctly different mission scenarios to make movement decisions that balance the respective mission goal with navigation constraints. By introducing a novel approach exploiting a compressed global map of the environment combined with a cropped but uncompressed local map showing the vicinity of the UAV agent, we demonstrate that the proposed method can efficiently scale to large environments. We also extend previous results for generalizing control policies that require no retraining when scenario parameters change and offer a detailed analysis of crucial map processing parameters' effects on path planning performance.

OriginalspracheEnglisch
Titel2021 20th International Conference on Advanced Robotics, ICAR 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten539-546
Seitenumfang8
ISBN (elektronisch)9781665436847
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung20th International Conference on Advanced Robotics, ICAR 2021 - Ljubljana, Slowenien
Dauer: 6 Dez. 202110 Dez. 2021

Publikationsreihe

Name2021 20th International Conference on Advanced Robotics, ICAR 2021

Konferenz

Konferenz20th International Conference on Advanced Robotics, ICAR 2021
Land/GebietSlowenien
OrtLjubljana
Zeitraum6/12/2110/12/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „UAV Path Planning using Global and Local Map Information with Deep Reinforcement Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren