Abstract
We derive higher-order error bounds with small prefactors for a general Trotter product formula, generalizing a result given by Childs et al. [Phys. Rev. X 11, 011020 (2021)2160-330810.1103/PhysRevX.11.011020]. We then apply these bounds to the real-time quantum time evolution operator governed by the Fermi-Hubbard Hamiltonian on one-dimensional and two-dimensional square and triangular lattices. The main technical contribution of our work is a symbolic evaluation of nested commutators between hopping and interaction terms for a given lattice geometry. The calculations result in explicit expressions for the error bounds in terms of the time step and Hamiltonian coefficients. Comparison with the actual Trotter error (evaluated on a small system) indicates that the bounds still overestimate the error.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 195105 |
Fachzeitschrift | Physical Review B |
Jahrgang | 108 |
Ausgabenummer | 19 |
DOIs | |
Publikationsstatus | Veröffentlicht - 15 Nov. 2023 |