Tree Mover's Distance: Bridging Graph Metrics and Stability of Graph Neural Networks

Ching Yao Chuang, Stefanie Jegelka

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

10 Zitate (Scopus)

Abstract

Understanding generalization and robustness of machine learning models fundamentally relies on assuming an appropriate metric on the data space. Identifying such a metric is particularly challenging for non-Euclidean data such as graphs. Here, we propose a pseudometric for attributed graphs, the Tree Mover's Distance (TMD), and study its relation to generalization. Via a hierarchical optimal transport problem, TMD reflects the local distribution of node attributes as well as the distribution of local computation trees, which are known to be decisive for the learning behavior of graph neural networks (GNNs). First, we show that TMD captures properties relevant to graph classification: a simple TMD-SVM performs competitively with standard GNNs. Second, we relate TMD to generalization of GNNs under distribution shifts, and show that it correlates well with performance drop under such shifts. The code is available at https://github.com/chingyaoc/TMD.

OriginalspracheEnglisch
TitelAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
Redakteure/-innenS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
Herausgeber (Verlag)Neural information processing systems foundation
ISBN (elektronisch)9781713871088
PublikationsstatusVeröffentlicht - 2022
Extern publiziertJa
Veranstaltung36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, USA/Vereinigte Staaten
Dauer: 28 Nov. 20229 Dez. 2022

Publikationsreihe

NameAdvances in Neural Information Processing Systems
Band35
ISSN (Print)1049-5258

Konferenz

Konferenz36th Conference on Neural Information Processing Systems, NeurIPS 2022
Land/GebietUSA/Vereinigte Staaten
OrtNew Orleans
Zeitraum28/11/229/12/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Tree Mover's Distance: Bridging Graph Metrics and Stability of Graph Neural Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren