Treating Noise and Anomalies in Vehicle Trajectories from an Experiment with a Swarm of Drones

Vishal Mahajan, Emmanouil Barmpounakis, Md Rakibul Alam, Nikolas Geroliminis, Constantinos Antoniou

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

4 Zitate (Scopus)

Abstract

Unmanned aerial systems, known as 'drones,' are relatively new in collecting traffic data. Data from drone videography can have potential applications for traffic research. Drones can record the vehicles from their aerial point-of-view and provide their naturalistic driving behavior. Processing raw data from drones to remove noise and anomalies is crucial to ensure that the data are fit for subsequent applications, e.g., the development of traffic flow or crash risk models. This study uses a part of the pNEUMA dataset, a large dataset with almost half a million trajectories captured by a swarm of drones over Athens, Greece. This novel dataset offers an opportunity to analyze the data attributes and treat the noise and outliers in the data. We use a combination of smoothing filters and Extreme Gradient Boosting with adaptive regularization to process the speed and acceleration profiles of the vehicle trajectories in the dataset. Our approach can help prospective data users treat this or similar trajectory datasets alternatively to applying manual thresholds and assist in accelerating research in microscopic traffic analysis.

OriginalspracheEnglisch
Seiten (von - bis)9055-9067
Seitenumfang13
FachzeitschriftIEEE Transactions on Intelligent Transportation Systems
Jahrgang24
Ausgabenummer9
DOIs
PublikationsstatusVeröffentlicht - 1 Sept. 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Treating Noise and Anomalies in Vehicle Trajectories from an Experiment with a Swarm of Drones“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren