Transitioning spiking neural network simulators to heterogeneous hardware

Quang Anh Pham Nguyen, Philipp Andelfinger, Wentong Cai, Alois Knoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

Spiking neural networks (SNN) are among the most computationally intensive types of simulation models, with node counts on the order of up to 1011. Currently, there is intensive research into hardware platforms suitable to support large-scale SNN simulations, whereas several of the most widely used simulators still rely purely on the execution on CPUs. Enabling the execution of these established simulators on heterogeneous hardware allows new studies to exploit the many-core hardware prevalent in modern supercomputing environments, while still being able to reproduce and compare with results from a vast body of existing literature. In this paper, we propose a transition approach for CPU-based SNN simulators to enable the execution on heterogeneous hardware (e.g., CPUs, GPUs, and FPGAs) with only limited modifications to an existing simulator code base, and without changes to model code. Our approach relies on manual porting of a small number of core simulator functionalities as found in common SNN simulators, whereas unmodified model code is analyzed and transformed automatically. We apply our approach to the well-known simulator NEST and make a version executable on heterogeneous hardware available to the community. Our measurements show that at full utilization, a single GPU achieves the performance of about 9 CPU cores.

OriginalspracheEnglisch
TitelSIGSIM-PADS 2019 - Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation
Herausgeber (Verlag)Association for Computing Machinery, Inc
Seiten115-126
Seitenumfang12
ISBN (elektronisch)9781450367233
DOIs
PublikationsstatusVeröffentlicht - 29 Mai 2019
Veranstaltung2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, SIGSIM-PADS 2019 - Chicago, USA/Vereinigte Staaten
Dauer: 3 Juni 20195 Juni 2019

Publikationsreihe

NameSIGSIM-PADS 2019 - Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation

Konferenz

Konferenz2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, SIGSIM-PADS 2019
Land/GebietUSA/Vereinigte Staaten
OrtChicago
Zeitraum3/06/195/06/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Transitioning spiking neural network simulators to heterogeneous hardware“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren