Transfer Learning in Automotive Radar Using Simulated Training Data Sets

Felix Rutz, Ralph Rasshofer, Erwin Biebl

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

For a reliable detection and classification of road users in modern automotive radar systems, latest research introduces machine-learning (ML) based algorithms in competition to implementations based on the classical radar signal processing chain. Suitable training datasets for ML systems based on real-world radar measurements are however either rarely available or lack the specific radar raw data. A training approach based on transfer-learning methods from data generated by a simulation framework is presented for the range-Doppler-representation of radar measurement data. In particular, the impact of dataset size and sample quality in relation to the performance of the ML system in the radar domain is examined.

OriginalspracheEnglisch
Titel2023 24th International Radar Symposium, IRS 2023
Herausgeber (Verlag)IEEE Computer Society
ISBN (elektronisch)9783944976341
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung24th International Radar Symposium, IRS 2023 - Berlin, Deutschland
Dauer: 24 Mai 202326 Mai 2023

Publikationsreihe

NameProceedings International Radar Symposium
Band2023-May
ISSN (Print)2155-5753

Konferenz

Konferenz24th International Radar Symposium, IRS 2023
Land/GebietDeutschland
OrtBerlin
Zeitraum24/05/2326/05/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Transfer Learning in Automotive Radar Using Simulated Training Data Sets“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren