Trajectory planning for manipulators based on the optimal concatenation of LQ control primitives

Michael Steinegger, Benjamin Passenberg, Marion Leibold, Martin Buss

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

A trajectory planning method for robotic systems consisting of kinematic chains is introduced based on the concatenation of control primitives. The parameterized, optimal motion primitives are derived from a parametric, linear-quadratic optimal control problem, which is formulated for the input-to-state and input-to-output linearized robot dynamics. The primitives can be concatenated, such that the resulting trajectory is optimal with respect to desired intermediate points. Here, sub-optimal intermediate points are found by a heuristic motion planning algorithm and are iteratively inserted, if necessary, to avoid collisions with obstacles in the robot workspace. All parameters for concatenated primitives are uniquely determined by the solution of a system of parameterized linear equations. In comparison to ordinary approaches based on optimal control, the computational effort for trajectory planning is reduced, since the system of linear equations can be solved on-line by algebraic computations.

OriginalspracheEnglisch
Titel2011 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2837-2842
Seitenumfang6
ISBN (Print)9781612848006
DOIs
PublikationsstatusVeröffentlicht - 2011
Veranstaltung2011 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011 - Orlando, FL, USA/Vereinigte Staaten
Dauer: 12 Dez. 201115 Dez. 2011

Publikationsreihe

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (elektronisch)2576-2370

Konferenz

Konferenz2011 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011
Land/GebietUSA/Vereinigte Staaten
OrtOrlando, FL
Zeitraum12/12/1115/12/11

Fingerprint

Untersuchen Sie die Forschungsthemen von „Trajectory planning for manipulators based on the optimal concatenation of LQ control primitives“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren